Polyvascular Disease with and without Diabetes and the risk of Cardiovascular and Limb Events: Observations from EUCLID

Sean Behan, MD
Cecilia C. Low Wang MD, Connie N. Hess MD, Hillary Mulder MS, Antonio Gutierrez MD, Francis Fowkes MB
ChB, Iris Baumgartner MD, Jeffrey Berger MD, Brian Katona MD, Kenneth Mahaffey MD, Lars Norgren MD PhD, Juuso Blomster MD, W. Schuyler Jones MD, Manesh Patel
MD, William R. Hiatt MD, and
Marc P. Bonaca MD MPH

Disclosures

Dr. Hiatt and Dr. Bonaca report receiving grants to CPC Clinical Research (Academic Research Organization affiliate of University of Colorado) from: Bayer, Janssen and Amgen

Background

In ACS Patients:

- polyvascular disease and diabetes are each associated with the risk of MACE
- The combination of both is associated with further heightened risk

Background

- PAD and microvascular disease are each associated with the risk of amputation
- The combination of both is associated with further heightened risk

Objectives

1. Does the observation that polyvascular disease and diabetes are each associated with MACE risk and the combination with further heightened risk extend to patients with lower extremity peripheral artery disease (PAD)?
2. Do polyvascular disease and diabetes also predict the risk of major adverse limb events, including:

- Acute limb ischemia
- Major amputation

Methods - EUCLID Design

Key exclusion criteria:

- Poor metabolizer for CYP2C19
- Patients requiring dual anti-platelet therapy

Inclusion criteria:
Symptomatic PAD AND one of the following:
A. ABI ≤ 0.80 at Visit $1 \leq 0.85$ at Visit 2 OR
B. Prior lower extremity revascularization > 30 days

Primary Endpoint: cardiovascular death, myocardial infarction, or ischemic stroke

Methods

PAD defined as:

1. Previous revascularization of lower limbs for symptomatic disease at least 30 days before randomization OR
2. Hemodynamic evidence of PAD (ABI of <0.80 at screening)

Polyvascular disease (PVD) defined as:

- Number of disease vascular beds (e.g. coronary or cerebrovascular) in addition to PAD (1=PAD only)

Diabetes (DM) defined as a reported history of diabetes at randomization

Endpoint Definitions
MACE = composite of CV death, MI, Ischemic Stroke
MALE = composite of ALI and Major Amputation

Methods

- KM event rates for each subgroup and endpoint
- Cox proportional hazards model used to assess relationship between PVD x DM and clinical outcomes (MACE, MALE, and each of their component pieces) with referent the absence of both PAD and DM
- Proportional hazards assumption assessed using weighted Schoenfeld residuals
- Risk for factor and outcome adjusted for baseline differences including age, weight, sex, region, ABI, GFR, statin use, ARB use, tobacco use

Results - Population

Results - Population

Characteristic	$\begin{aligned} & \text {-PVD } \\ & \text {-DM } \end{aligned}$	$\frac{+\mathrm{PVD}}{-\mathrm{DM}}$	$\begin{aligned} & \text {-PVD } \\ & \text { +DM } \end{aligned}$	$\frac{+\mathrm{PVD}}{+\mathrm{DM}}$	P-value
Median Age (y)	65	67	66	67	<0.001
Female (\%)	29	24	32	26	<0.001
HTN (\%)	65	85	81	90	<0.001
HLD (\%)	65	85	72	88	<0.001
Tobacco Use (\%)	37	34	25	22	<0.001
Prior amp (\%)	1.8	1.4	4.5	3	<0.001
Previous Periph Revasc (\%)	58	60	48	59	NA
CAD (\%)	-	63	-	71	$N A$
MI (\%)	-	40	-	43	$N A$
Stroke (\%)	-	18	-	21	NA
Cilostazol Use (\%)	15	12	18	16	<0.001
Statin (\%)	65	83	66	84	<0.001

Results - Risk of Major Adverse Cardiovascular Events

Results - Risk of Major Adverse Cardiovascular Events

Presence or Absence of Polyvascular Disease (PVD) or Diabetes Mellitus (DM)

Results - Risk of Major Adverse Limb Events

*Adj HR 1.40

Presence or Absence of Polyvascular Disease (PVD) or Diabetes Mellitus (DM)
*Adjusted for: age, weight, sex, region, ABI, GFR,
statin use, ARB use, tobacco use

Results - Risk of Major Adverse Limb Events

Major Amputation

Presence or Absence of Polyvascular Disease (PVD) or Diabetes Mellitus (DM)
*Adjusted for: age, weight, sex, region, ABI, GFR, statin use, ARB use,

Results - Summary

Both polyvascular disease and diabetes independently
associated with
MACE

Diabetes but not polyvascular
disease independently associated with Amputation

Neither polyvascular disease or diabetes independently associated with
Acute limb ischemia

Presence or Absence of Polyvascular Disease (PVD) or Diabetes Mellitus (DM)

The predictors of MACE and limb outcomes may differ and the predictors of limb outcomes may depend on the type and underlying biology

Summary

- The risk relationship for diabetes, polyvascular disease and the combination for MACE extends to patients with lower extremity PAD
- The relationship of these factors MALE risk is different overall and by type of event:
- Acute limb ischemia, a thrombotic complication, is not associated with concomitant coronary or cerebrovascular disease or diabetes
- Amputation, of multifactorial etiology including infection and microvascular disease, is driven by concomitant diabetes

Conclusion

- Risk factors for cardiovascular and limb events may differ based on the underlying etiology of the events
- Polyvascular disease and diabetes are potent and independent predictors of major adverse cardiovascular events
- Diabetes is an independent predictor of amputation
- Acute limb ischemia, a severe thrombotic event, does not appear to be driven by polyvascular disease or diabetes and additional investigation to enable risk stratification for this outcome is needed

