Clinical Trials for Vascular Complications of COVID-19: An Overview

Connie N. Hess, MD, MHS
University of Colorado School of Medicine
CPC Clinical Research
Disclosures

Research grants to CPC Clinical Research from Amgen, Bayer, Janssen, Merck, and Arca Biopharma
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
Thrombosis plays a major role in COVID-19

Incidence of Thrombotic Events in Hospitalized Patients with COVID-19 in a NYC Health System

<table>
<thead>
<tr>
<th></th>
<th>PE (Events, No. (%))</th>
<th>DVT (Events, No. (%))</th>
<th>Stroke (Events, No. (%))</th>
<th>MI (Events, No. (%))</th>
<th>Other thromboembolism (Events, No. (%))</th>
<th>Any thrombotic event (Events, No. (%))</th>
<th>No thrombotic event (Events, No. (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>All hospitalized patients (ICU and non-ICU) (n = 3334)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events, No. (%)</td>
<td>106 (3.2)</td>
<td>129 (3.9)</td>
<td>54 (1.6)</td>
<td>298 (8.9)</td>
<td>32 (1.0)</td>
<td>533 (16.0)</td>
<td>2801 (84.0)</td>
</tr>
<tr>
<td>All-cause mortality, No. (%)</td>
<td>40 (37.7)</td>
<td>36 (27.9)</td>
<td>20 (37)</td>
<td>153 (51.3)</td>
<td>11 (34.4)</td>
<td>230 (43.2)</td>
<td>587 (21.0)</td>
</tr>
</tbody>
</table>

Thrombotic events detected in 31% of 184 Dutch COVID-19 ICU patients

Subsegmental pulmonary embolism

Pulmonary microthrombus

Renal vein organizing thrombus
Role of Tissue Factor in COVID-19

- A major activator of the coagulation cascade during viral infection
- Incorporation into viral envelope may lead to dysregulation of coagulation cascade
- Plays a central role in inflammatory signaling and dysregulated immunity related to viral infections
- Enhances viral dissemination
Heparin associated with reduced mortality in severe COVID-19

Retrospective analysis of 449 patients

Society Thromboprophylaxis Recommendations* for Hospitalized COVID-19 Patients

<table>
<thead>
<tr>
<th>Patient population</th>
<th>ISTH</th>
<th>Anticoagulation Forum</th>
<th>ACC</th>
<th>ASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-ICU hospitalized COVID-19</td>
<td>• Prophylaxis recommended (LMWH>UFH)</td>
<td>• Prophylaxis recommended</td>
<td>• Prophylaxis recommended</td>
<td>• Prophylaxis recommended (LMWH>UFH)</td>
</tr>
<tr>
<td></td>
<td>• Intermediate dose “can be considered”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Therapeutic AC not recommended</td>
</tr>
</tbody>
</table>

ICU hospitalized COVID-19	• Prophylaxis recommended (LMWH>UFH)	• Intermediate dose VTE prophylaxis
		o Enoxaparin 40 mg SC bid or 0.5 mg/kg SC bid
		o Heparin 7500 U SC TID
		o Low-intensity heparin gtt
	• Therapeutic AC not recommended	

Additional considerations
- Recommend against using biomarker thresholds (e.g. d-dimer) to trigger escalations in anticoagulation
- Recommend anti-Xa assay over aPTT
- Reasonable to increase intensity of anticoagulation or to switch anticoagulants in setting of recurrent clotting of access devices despite prophylactic anticoagulation

* Recommendations based on expert survey

More than 30 trials of thromboprophylaxis in COVID-19 ongoing or planned
Overview

• Background
• **Clinical Trial Framework**
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
Trial Setting

PRE-HOSPITAL
COVID+
Outpatient

HEP COVID
ASPEN
PARTISAN
COVID-HEP
IMPROVE
COVID-PACT
COVAC-TP
COVI-DOSE
RAPID-BRAZIL
FREEDOM COVID
ANTI-CO
IMPACT
INSPIRATION
HERO-19

PREVENT-HD
ETHIC
ACTIV-4
NCT04498273
NCT04400799

HOSPITALIZED
COVID+
Inpatient

ACTIV-4
ACTION
COVID-PREVENT
VTE-COVID
TOLD
ATTACC
X-COVID 19
INHIXACOV19
ACOVACT
CORIMMUNO-COAG

NCT04508439

CONVALESCENT
COVID+
Discharged

ACTIV-4
COVID-PREVENT
NCT04508439
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
Predictors of Mortality in COVID-19

191 patients in Wuhan, China

IL-6

D-dimer

Troponin

D-dimer predicts mortality in critically ill COVID-19

Graph:
- **Title:** 639 ICU COVID-19 patients in Europe
- **Y-axis:** Cumulative ICU Survival
- **X-axis:** Overall Survival (days)
- **Legend:**
 - D-dimer (µg/ml)
 - <1560
 - ≥1560

Graph Details:
- **HR 2.71 (95% CI 1.56 - 4.73)**
Thrombosis Risk Scores in Hospitalized Patients

Padua

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Cancer</td>
<td>+3</td>
</tr>
<tr>
<td>Previous VTE (excluding superficial vein thrombosis)</td>
<td>+3</td>
</tr>
<tr>
<td>Reduced Mobility</td>
<td>+3</td>
</tr>
<tr>
<td>Already known thrombophilic condition</td>
<td>+3</td>
</tr>
<tr>
<td>Recent (≤1 month) trauma and/or surgery</td>
<td>+2</td>
</tr>
<tr>
<td>Elderly Age (≥70 years)</td>
<td>+1</td>
</tr>
<tr>
<td>Heart and/or respiratory failure</td>
<td>+1</td>
</tr>
<tr>
<td>Acute MI and/or Ischemic Stroke</td>
<td>+1</td>
</tr>
<tr>
<td>Acute infection and/or rheumatologic disorder</td>
<td>+1</td>
</tr>
<tr>
<td>Obesity (BMI ≥30)</td>
<td>+1</td>
</tr>
<tr>
<td>Ongoing hormonal treatment</td>
<td>+1</td>
</tr>
</tbody>
</table>

IMPROVE

SIC

Table 6—Adjusted Cox Associative Model for 3-Month VTE and Points Assigned to Each Patient Characteristic

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>HR (95% CI)</th>
<th>χ²</th>
<th>P Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous VTE</td>
<td>4.7 (3.0-7.2)</td>
<td>48</td>
<td><.001</td>
<td>3</td>
</tr>
<tr>
<td>Known thrombophilia</td>
<td>3.5 (1.1-11)</td>
<td>5.2</td>
<td>.04</td>
<td>2</td>
</tr>
<tr>
<td>Current lower-limb paralysis</td>
<td>3.0 (1.6-5.7)</td>
<td>11</td>
<td>.001</td>
<td>2</td>
</tr>
<tr>
<td>Current cancer</td>
<td>2.8 (1.9-4.2)</td>
<td>27</td>
<td><.001</td>
<td>2</td>
</tr>
<tr>
<td>Immobilized ≥7 d</td>
<td>1.9 (1.3-2.7)</td>
<td>11</td>
<td>.001</td>
<td>2</td>
</tr>
<tr>
<td>ICU/CCU stay</td>
<td>1.8 (1.1-2.9)</td>
<td>6.1</td>
<td>.01</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥60 y</td>
<td>1.7 (1.1-2.6)</td>
<td>6.3</td>
<td>.01</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3—Scoring for the diagnosis of sepsis-induced coagulopathy

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>0 point</th>
<th>1 point</th>
<th>2 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prothrombin time</td>
<td>PT-INR</td>
<td>≤1.2</td>
<td>>1.2</td>
<td>>1.4</td>
</tr>
<tr>
<td>Coagulation</td>
<td>Platelet count (×10⁹/L)</td>
<td>≥150</td>
<td><150</td>
<td><100</td>
</tr>
<tr>
<td>Total SOFA</td>
<td>SOFA four items</td>
<td>0</td>
<td>1</td>
<td>≥2</td>
</tr>
</tbody>
</table>

SOFA, Sequential Organ Failure Assessment
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
COVID-19 Disease Progression

Stage I
(Early Infection)

Viral response phase

Stage II
(Pulmonary Phase)

IIA

IIIB

Stage III
(Hyperinflammation Phase)

Host inflammatory response phase

Immunothrombosis

Siddiqui HK and Mehra MR. J Heart and Lung Transplant 2020
Thromboprophylaxis in COVID-19

Bikdeli B et al. Thromb Haemost. 2020
Study Intervention: Target vs. Intensity

Most trials focused on varying intensity of existing therapies rather than on varying targets.
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
Outcomes

• Efficacy
 – Clinical endpoints
 – Novel endpoints

• Safety

Adaptive COVID-19 Treatment Trial (ACTT) Scale

1. Death
2. Hospitalized, on invasive mechanical ventilation or extracorporeal membrane oxygenation
3. Hospitalized, on non-invasive ventilation or high flow oxygen devices
4. Hospitalized, requiring supplemental oxygen
5. Hospitalized, not requiring supplemental oxygen - requiring ongoing medical care
6. Hospitalized, not requiring supplemental oxygen - no longer requires ongoing medical care
7. Not hospitalized, limitation on activities and/or requiring home oxygen
8. Not hospitalized, no limitations on activities

Post-COVID-19 Functional Status (PCFS)

Beigel JH et al. NEJM 2020
Klok FA et al. Eur Respir J 2020
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
Operational Challenges for COVID-19 Trials

- Informed consent
- Drug manufacturing and delivery
- Monitoring
- Endpoint identification and adjudication
- Timelines
- Competing studies
Overview

• Background
• Clinical Trial Framework
 – Trial setting
 – Study population
 – Therapeutic intervention
 – Outcomes
 – Operational challenges
• Example trials
• Conclusions
PREVENT-HD
A Study of Rivaroxaban to Reduce the Risk of Major Venous and Arterial Thrombotic Events, Hospitalization and Death in Medically Ill Outpatients With Acute, Symptomatic COVID-19 Infection

Patients with Positive COVID-19 Test for Infection (e.g., PCR)

Screening Period
Up to 14 days

Screening Visit
Day -14 to Day -1

Rivaroxaban 10 mg OD (+ standard of care)

Placebo OD (+ standard of care)

N = \sim 4000
(1:1)

Day 1

Day 35

At least one risk factor:
- Age \geq 60
- Any history of VTE
- History of CAD, PAD, Cerebrovascular
- History of thrombophilia
- History of cancer
- History of diabetes
- History of heart failure
- Body Mass Index \geq 35 kg/m2
- D-dimer > ULN

Primary efficacy endpoint: Composite symptomatic VTE, MI, ischemic stroke, acute limb ischemia, non-CNS systemic embolism, all-cause hospitalization, or all-cause mortality up to Day 35

Primary safety: ISTH critical site and fatal bleeding
Trial Setting

PRE-HOSPITAL
- COVID+ Outpatient
 - PREVENT-HD
 - ETHIC
 - ACTIV-4
 - NCT04498273
 - NCT04400799

HOSPITALIZED
- COVID+ Inpatient
 - HEP COVID
 - ASPEN
 - PARTISAN
 - COVID-HEP
 - IMPROVE
 - COVID-PACT
 - COVAC-TP
 - COVI-DOSE
 - RAPID-BRAZIL
 - FREEDOM COVID
 - CORIMMUNO-COAG
 - IMPROVE
 - COVID-PACT
 - COVAC-TP
 - COVI-DOSE
 - RAPID-BRAZIL
 - FREEDOM COVID
 - CORIMMUNO-COAG

CONVALESCENT
- COVID+ Discharged
 - ACTIV-4
 - ACTION
 - COVID-PREVENT
 - VTE-COVID
 - TOLD
 - ATTACC
 - X-COVID 19
 - INHIXACOV19
 - ACOVACT
 - CORIMMUNO-COAG
 - NCT04508439

An Affiliate of:
HEP-COVID Trial
Systemic Anticoagulation With Full Dose Low Molecular Weight Heparin (LMWH) vs. Prophylactic or Intermediate Dose LMWH in High Risk COVID-19 Patients

Inclusion criteria:
1. Age ≥ 18 yrs
2. COVID-19 positive
3. Hospitalized with RR >20 or resting O2 sat < 92%
4. DD > 6 X ULN OR SIC score ≥ 4

Randomization

- **Stratum 1** Subjects in ICU
 - Enoxaparin 1mg/kg SQ BID
 - SOC Px or intermediate dose heparin

- **Stratum 2** Subjects not in ICU
 - Enoxaparin 1mg/kg SQ BID
 - SOC Px or intermediate dose heparin

Primary Efficacy Endpoint: Composite of total venous thromboembolism, arterial thromboembolism, all-cause mortality on Day 30 ± 2

Key Secondary Efficacy Endpoint: Primary efficacy endpoint at Day 10 + 4

Other Secondary Efficacy Endpoints: Progression to ARDS, need for intubation, rehospitalization on Day 30 ± 2

Principal Safety Endpoint: Major Bleeding (ISTH Definition) on Day 30 ± 2

Sample size: 308 with event rate in control of 42%, RRR of 40%, power of 80% and 2-sided alpha 5%
Trial Setting

PRE-HOSPITAL

COVID+
Outpatient

- PREVENT-HD
- ETHIC
- ACTIV-4
- NCT04498273
- NCT04400799

HOSPITALIZED

COVID+
Inpatient

- HEP COVID
- ASPEN
- PARTISAN
- COVID-HEP
- IMPROVE
- COVID-PACT
- COVAC-TP
- COVI-DOSE
- RAPID-BRAZIL
- FREEDOM COVID

- ACTIV-4
- ACTION
- COVID-PREVENT
- VTE-COVID
- ATTACC
- X-COVID 19
- INHIXACOV19
- ACOVACT

CONVALESCENT

COVID+
Discharged

- ACTIV-4
- COVID-PREVENT
- NCT04508439

An Affiliate of:

NCT04505774

Trial Setting
Recombinant Nematode Anticoagulant Protein c2 (rNAPc2)

• Small recombinant protein cloned from hookworm
• Potent, long-acting inhibitor of tissue factor
• Anticoagulant activity, safety, and PK established from clinical trials in 700+ patients
rNAPc2 Targets More Than Coagulation

rNAPc2 lowers D-dimer and inflammation and improves survival in Ebola-infected non-human primates

D-dimer

IL-6

MCP-1

Survival

rNAPc2 reduces viral load in mice inoculated with HSV1

Virus

Heart

Lung

Hirudin
NAPc2
Apixaban

Days

Days

Days post infection

Days post infection

Lancet 2003;362:1953
J Thromb Haemost 2019;17:482
rNAPc2

Anti-inflammatory and anti-viral properties
ASPEN-COVID-19
Assessing Safety and Efficacy of rNAPc2 in COVID-19

Phase 2b

Screening up to 7d

Inclusion
- SARS-CoV-2 positive
- D-dimer > ULN

Endpoints
1° efficacy: ΔD-dimer (baseline to day 8)
2° efficacy: coagulation and inflammatory biomarkers
Other exploratory EPs
1° safety: clinically relevant bleeding

- rNAPc2 lower dose, n=25
- rNAPc2 higher dose, n=25
- Heparin SOC, n=50

30d follow up
Trial Setting

PRE-HOSPITAL
COVID+ Outpatient

HOSPITALIZED
COVID+ Inpatient

CONVALESCENT
COVID+ Discharged

PREVENT-HD
ETHIC
ACTIV-4
NCT04498273
NCT04400799

HEP COVID
ASPEN
PARTISAN
COVID-HEP
IMPROVE
COVID-PACT
COVAC-TP
COVI-DOSE
RAPID-BRAZIL
FREEDOM COVID
ANTI-CO
IMPACT
INSPIRATION
HERO-19

ACTIV-4
ACTION
COVID-PREVENT
VTE-COVID
TOLD
ATTACC
X-COVID 19
INHIXACOV19
ACOVACT
CORIMMUNO-COAG
NCT04508439
NCT04508439
NCT04508439
NCT04508439

An Affiliate of:
ACTIV-4 Antithrombotics
Accelerating COVID-19 Therapeutic Interventions and Vaccines

<table>
<thead>
<tr>
<th>Setting/Population</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-HOSPITAL</td>
<td>Elevated D-dimer and CRP</td>
<td>Hospitalization for CV/pulmonary events, arterial or venous thrombosis, all-cause mortality up to 45 days</td>
</tr>
<tr>
<td>INTERVENTION</td>
<td>Apixaban 5 mg, Apixaban 2.5 mg, Aspirin 81 mg, Placebo</td>
<td>HOSPITALIZED</td>
</tr>
<tr>
<td></td>
<td>Therapeutic heparin, Prophylactic heparin</td>
<td>Outcome</td>
</tr>
<tr>
<td>CONVALESCENT</td>
<td>Discharged after COVID-19 hospitalization</td>
<td>ANTITHROMBOTIC THERAPY</td>
</tr>
</tbody>
</table>
Conclusions

• Thrombosis is a significant vascular complication in COVID-19

• Many COVID-19 thromboprophylaxis trials ongoing or planned
 – Varying intensities of existing therapies
 – Novel therapeutic targets

• Operational considerations remain a challenge

• Collaborative and innovative efforts to expedite scientific discovery and improve treatment for COVID-19 patients