Amputation in Patients with PAD with and without Diabetes: Insights from the EUCLID Trial

Nicholas Govsyeyev,^{1,2} Mark R. Nehler,^{1,2} Cecilia C. Low Wang,^{1,3} Sarah Kavanagh,¹ William R. Hiatt,^{1,3} Chandler Long,⁴ W. Schuyler Jones,⁴ F. Gerry R. Fowkes,⁵ Jeffrey S. Berger,⁶ Manesh R. Patel,⁴ Brian G. Katona,⁷ Lars Norgren,⁸ Marc P. Bonaca^{1,3} ¹CPC Clinical Research, Aurora, CO; ²University of Colorado Dept. of Surgery, Aurora, CO; ³University of Colorado School of Medicine, Aurora, CO; ⁴Duke University Medical Center, Durham, NC; ⁵University of Edinburgh, Edinburgh, Scotland; ⁶NYU School of Medicine, New York, NY; ⁷Astra Zeneca, Gaithersburg, MD; ⁸Örebro University, Örebro, Sweden

Abstract: P45

FINANCIAL DISCLOSURE

Presenter: Nicholas Govsyeyev

Nothing to disclose

Co-author:

Cecilia C. Low Wang, Sarah Kavanagh, Chandler Long have no disclosures

Mark R. Nehler reports research grant to CPC research from Bayer, Janssen

William R. Hiatt reports research grant to CPC clinical research from Amgen, Bayer, Janssen

W. Schuyler Jones reports honoraria from Bayer, Janssen and grant funding from Bristol Myers Squibb, Medtronic

F. Gerry R. Fowkes reports honoraria from AstraZeneca, Bayer, Merck **Jeffrey S. Berger** reports funding from NIH, AHA, AstraZeneca, Janssen

Manesh R. Patel reports consulting and grant funding from AstraZeneca, Bayer, HeartFlow, Janssen and grant funding from NHLBI

Brian G. Katona reports employment at AstraZeneca

Lars Norgren reports honoraria from AnGes, Pluristem, Bayer

Marc P. Bonaca reports research grants to CPC Clinical Research from Amgen, AstraZeneca, Bayer, NovoNordisk, Regeneron, Sanofi.

The EUCLID Trial was sponsored by AstraZeneca. ClinicalTrials.gov number, NCT01732822.

BACKGROUND

- Amputation is a major complication of peripheral artery disease (PAD)
- Multifactorial nature is increasingly recognized, particularly in those with concomitant diabetes mellitus (DM)
- Elucidating the drivers of amputation in PAD with and without DM may be important in developing strategies for prevention

WIfl Classification Wound Ischemia 0: No ulcer or gangrene Ankle Pressure/Toe Pressure 1: Small ulcer & no gangrene (mmHg) 2: Deep ulcer & toe gangrene 0: >100 / ≥60 3: Extensive ulcer/gangrene 1:70-100/40-59 2: 50-70 / 30-39 3: <50 / <30 foot Infection **0:No infection** 1:Mild: skin/subcut. 2:Moderate: deep to subcut. 3:Severe: systemic symptoms

METHODS

- EUCLID randomized 13,885 patients with PAD. Investigators prospectively reported all amputations
- In this post-hoc analysis, amputations (major – ankle and above, minor – distal to ankle) were retrospectively adjudicated using safety data when available to characterize the drivers including infection, ischemia, or multifactorial
- Etiologies were evaluated by DM status at baseline

COHORT CHARACTERISTICS

415 patients (3% of total) underwent 533 amputations over a median of 30 months

*10 amputations were unknown regarding major or minor, 3 in diabetics and 7 in non-diabetics

Characteristic	At least one	No
	amputation	amputation
Ν	415	13,470
Age, mean (SD), years	66 (8.7)	67 (8.4)
Female	21%	28%
Current/former smoker	68%	79%
Diabetes Mellitus	67%	38%
Insulin requirement	59%	35%
Oral agent alone	37%	57%
Diet control alone	4%	8%
HbA1c (%), mean (SD)	7.8 (2.1)	6.8 (8.4)
PAD Characteristics		
ABI, mean (SD)	0.64 (0.27)	0.72 (0.21)
Prior revascularization	62%	56%
Prior major amputation	11%	2%
Prior minor amputation	25%	4%
Rutherford Classification		
0. Asymptomatic	13%	19%
1-2. Mild/Mod claudication	39%	54%
3. Severe claudication	27%	23%
4. Rest pain	9%	3%
5. Minor tissue loss	9%	1%
6. Major tissue loss	3%	<1%

TIMING OF AMPUTATIONS

RESULTS

- 172 out of 533 non-traumatic amputations with sufficient documentation to determine drivers
- Ischemia was the primary driver overall (51%) followed by infection (27%) and multifactorial (22%)
- Primary driver varied by DM status

RESULTS

Diabetes No Diabetes 2% 6% 5% Major Amputations 9% 26% 43% 26% 83% 7% Minor Amputations 22% 46% 29% 78% 18%

Infection alone

Ischemia alone

Infection primary, ischemia contributing
Ischemia primary, infection contributing

 The etiology varied for major and minor with the former driven by ischemia (65%) and the latter driven by infection (59%)

 Infection was the predominant driver in patients with diabetes for both major (52%) and minor (64%) amputations

LIMITATIONS & CONCLUSION

LIMITATIONS

- Subgroup analysis of RCT
- Critical limb ischemia (CLI) underrepresented in overall clinical trial population
- Incomplete data for adjudication of amputation drivers

CONCLUSION

- Amputations in PAD appear to have different primary drivers depending on concomitant Diabetes
- Infection may have a larger role in patients with Diabetes and ischemia in patients without Diabetes

