Amputation in Patients with PAD with and without Diabetes: Insights from the EUCLID Trial

Nicholas Govsyeyev,1,2 Mark R. Nehler,1,2 Cecilia C. Low Wang,1,3 Sarah Kavanagh,1 William R. Hiatt,1,3 Chandler Long,4 W. Schuyler Jones,4 F. Gerry R. Fowkes,5 Jeffrey S. Berger,6 Manesh R. Patel,4 Brian G. Katona,7 Lars Norgren,8 Marc P. Bonaca1,3
1CPC Clinical Research, Aurora, CO; 2University of Colorado Dept. of Surgery, Aurora, CO; 3University of Colorado School of Medicine, Aurora, CO; 4Duke University Medical Center, Durham, NC; 5University of Edinburgh, Edinburgh, Scotland; 6NYU School of Medicine, New York, NY; 7Astra Zeneca, Gaithersburg, MD; 8Örebro University, Örebro, Sweden

Abstract: P45
FINANCIAL DISCLOSURE

Presenter: Nicholas Govsyeyev
Nothing to disclose

Co-author:
Cecilia C. Low Wang, Sarah Kavanagh, Chandler Long have no disclosures
Mark R. Nehler reports research grant to CPC research from Bayer, Janssen
William R. Hiatt reports research grant to CPC clinical research from Amgen, Bayer, Janssen
W. Schuyler Jones reports honoraria from Bayer, Janssen and grant funding from Bristol Myers Squibb, Medtronic
F. Gerry R. Fowkes reports honoraria from AstraZeneca, Bayer, Merck
Jeffrey S. Berger reports funding from NIH, AHA, AstraZeneca, Janssen
Manesh R. Patel reports consulting and grant funding from AstraZeneca, Bayer, HeartFlow, Janssen and grant funding from NHLBI
Brian G. Katona reports employment at AstraZeneca
Lars Norgren reports honoraria from AnGes, Pluristem, Bayer
Marc P. Bonaca reports research grants to CPC Clinical Research from Amgen, AstraZeneca, Bayer, NovoNordisk, Regeneron, Sanofi.

The EUCLID Trial was sponsored by AstraZeneca. ClinicalTrials.gov number, NCT01732822.
Amputation is a major complication of peripheral artery disease (PAD).

Multifactorial nature is increasingly recognized, particularly in those with concomitant diabetes mellitus (DM).

Elucidating the drivers of amputation in PAD with and without DM may be important in developing strategies for prevention.
 METHODS

• EUCLID randomized 13,885 patients with PAD. Investigators prospectively reported all amputations.

• In this post-hoc analysis, amputations (major – ankle and above, minor – distal to ankle) were **retrospectively adjudicated using safety data** when available to characterize the drivers including **infection**, **ischemia**, or multifactorial.

• Etiologies were evaluated by **DM status at baseline**.
415 patients (3% of total) underwent 533 amputations over a median of 30 months.

Cohort Characteristics

- **533 Amputations**
 - 260 Major
 - 263 Minor
 - 10 Unknown*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>At least one amputation</th>
<th>No amputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>415</td>
<td>13,470</td>
</tr>
<tr>
<td>Age, mean (SD), years</td>
<td>66 (8.7)</td>
<td>67 (8.4)</td>
</tr>
<tr>
<td>Female</td>
<td>21%</td>
<td>28%</td>
</tr>
<tr>
<td>Current/former smoker</td>
<td>68%</td>
<td>79%</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>67%</td>
<td>38%</td>
</tr>
<tr>
<td>Insulin requirement</td>
<td>59%</td>
<td>35%</td>
</tr>
<tr>
<td>Oral agent alone</td>
<td>37%</td>
<td>57%</td>
</tr>
<tr>
<td>Diet control alone</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>HbA1c (%), mean (SD)</td>
<td>7.8 (2.1)</td>
<td>6.8 (8.4)</td>
</tr>
</tbody>
</table>

PAD Characteristics

- **ABI, mean (SD)**
 - 0.64 (0.27)
 - 0.72 (0.21)

- **Prior revascularization**
 - 62%
 - 56%

- **Prior major amputation**
 - 11%
 - 2%

- **Prior minor amputation**
 - 25%
 - 4%

Rutherford Classification

- **0. Asymptomatic**
 - 13%
 - 19%

- **1-2. Mild/Mod claudication**
 - 39%
 - 54%

- **3. Severe claudication**
 - 27%
 - 23%

- **4. Rest pain**
 - 9%
 - 3%

- **5. Minor tissue loss**
 - 9%
 - 1%

- **6. Major tissue loss**
 - 3%
 - <1%

*10 amputations were unknown regarding major or minor, 3 in diabetics and 7 in non-diabetics
TIMING OF AMPUTATIONS

Randomization

1st Amputation
After Initial Minor
10.7 mths
204 Major
199 Minor

2nd Amputation
After Initial Minor
3.3 mths

Subsequent Major
After Initial Minor
0.8 mths

Subsequent Minor
After Initial Minor
1.5 mths
RESULTS

• 172 out of 533 non-traumatic amputations with sufficient documentation to determine drivers

• **Ischemia** was the primary driver overall (51%) followed by **infection** (27%) and multifactorial (22%)

• Primary driver varied by **DM status**
The etiology varied for major and minor with the former driven by ischemia (65%) and the latter driven by infection (59%).

Infection was the predominant driver in patients with diabetes for both major (52%) and minor (64%) amputations.
LIMITATIONS & CONCLUSION

LIMITATIONS
• Subgroup analysis of RCT
• Critical limb ischemia (CLI) underrepresented in overall clinical trial population
• Incomplete data for adjudication of amputation drivers

CONCLUSION
• Amputations in PAD appear to have different primary drivers depending on concomitant Diabetes
• Infection may have a larger role in patients with Diabetes and ischemia in patients without Diabetes