

Efficacy and Safety of Rivaroxaban in Patients with PAD Undergoing Lower Extremity Revascularization for Critical Limb Ischemia

Marc P. Bonaca, Sebastian E. Debus, Manesh R. Patel, Mark R. Nehler, Sonia S. Anand, Connie N. Hess, Warren H. Capell, Taylor Bracken, Scott D. Berkowitz, Eva Muehlhofer, Lloyd P. Haskell, Rupert M. Bauersachs and William R. Hiatt on behalf of the VOYAGER PAD Investigators

Scientific Sessions of the American Heart Association 2020

Late Breaking Science

November 14, 2020

Disclosures

- VOYAGER PAD funded through a grant from Bayer to CPC Clinical Research
- Other research grants to CPC Clinical Research from Arca, Amgen, AstraZeneca, Bayer, Janssen, Merck, Novo Nordisk

Background

IOURNAL OF VASCULAR SURGERY 234.e2 Mills et al

Critical Limb Ischemia (CLI) represents the most severe manifestation of late stage peripheral artery disease

Traditionally defined by rest pain or tissue loss with evidence of ischemia, the most recent definition of Chronic Limb Threatening Ischemia (CLTI) and WIFi recognize its multifactorial nature including infection and wound characteristics

Revascularization is recommended (Class I) to prevent/minimize tissue loss

Outcomes after CLI are poor with high risk of ischemic complications, amputation and mortality

Optimal adjunctive medical therapy to improve outcomes in CLI/CLTI patients undergoing intervention has not been defined

Selected Cardiovascular Trials Enrolling Patients with PAD

Selected Cardiovascular Trials Enrolling Patients with PAD

Medical Therapy Trials including PAD patients generally:

- In stable/chronic setting
- Therefore, few patients with CLI

Total = 1,140

VOYAGER PAD Design

NCT02504216

6,564 Patients with Symptomatic Lower Extremity PAD* Undergoing Peripheral Revascularization

ASA 100 daily for all Patients Clopidogrel at Investigator's Discretion

*PAD defined as:

- Ischemic symptoms (functional limitation, rest pain or ischemic ulceration) AND
- Imaging evidence of occlusion AND
- <u>- Abnormal ABI/TBI</u>

Randomized 1:1 Double Blind

Rivaroxaban 2.5 mg twice daily

Stratified by Revascularization Approach (Surgical or Endovascular with and without clopidogrel)

Placebo

Follow up Q6 Months, Event Driven, Median f/u 28 Months

Primary Efficacy Endpoint: Acute limb ischemia, major amputation of vascular etiology, myocardial infarction, ischemic stroke or cardiovascular death

Principal Safety Outcome: TIMI Major Bleeding

Trials with PAD Subgroups

Total = 1,140

VOYAGER PAD Patients with CLI at Baseline = 1,533

Objectives

Objectives

- To evaluate the risk profile of patients undergoing lower extremity revascularization (LER) based on CLI vs no CLI at randomization
- To evaluate whether the efficacy and safety of rivaroxaban 2.5 mg twice daily with aspirin vs. aspirin alone is consistent in those with and without CLI at randomization:
 - Primary efficacy endpoint and principal safety outcome
 - Key secondary outcome of unplanned index limb revascularization due to the high risk of recurrent procedures in this population
 - Prespecified net clinical outcome including the primary outcome, ICH, fatal bleeding and all cause mortality due to the high mortality rate in this population

Objectives and Methods

Methods

Patients assigned Rutherford (2-3 claudication, 4-6 CLI) classification <u>at the time of qualifying revascularization</u> by trained vascular investigators

Efficacy :

- Primary composite (ITT) of acute limb ischemia, major amputation of a vascular etiology, myocardial infarction, ischemic stroke or CV death
- Secondary outcome for efficacy of unplanned index limb revascularization
- Safety
 - Principal safety outcome (on-treatment) of TIMI major bleeding
 - Secondary outcome for safety of ISTH major bleeding
- Prespecified net outcome (safety) including irreversible harm bleeding events (ICH or fatal bleeding) and all-cause mortality
- Outcomes adjudicated by a blinded CEC
- COX model used to test for effect modification on the basis of CLI

Baseline Characteristics

Characteristics at Randomization	CLI	Claudication (no CLI)
	N=1533 %	N=5031 %
Female	29	25
Caucasian	79	81
Diabetes Mellitus	47	38
Current Smoking	30	36
COPD	10	11
eGFR < 60 ml/min/1.73m ²	23	19
Coronary Artery Disease	29	32
Prior MI	8	12
Known Carotid Stenosis	7	9
Statin	81	80
ACEi or ARB	60	64

PAD & Procedural Characteristics

Characteristics at Randomization	CLI N=1533	Claudication (no CLI) N=5031
	%	<u>%</u>
Prior Peripheral Artery Disease History		
History of Claudication	82	99
History of Revascularization	27	38
History of Amputation	15	3
Ankle Brachial Index, Median (IQR)	0.46 (0.32 - 0.60)	0.58 (0.45 - 0.69)
Type of Revascularization		
Surgical	44	30
Endovascular or Hybrid	56	70
Days from Procedure to Rando, Median (IQR)	6 (3 – 8)	4 (2 – 7)
Target Lesion Length		
Short (< 5cm)	17	24
Intermediate (5cm to < 15cm)	38	40
Long (≥ 15cm)	43	32

Primary Endpoint in Placebo Arm with and without CLI at Randomization

Acute limb ischemia, major amputation for vascular cause, myocardial infarction, ischemic stroke, CV death

Primary Endpoint in Placebo Arm with and without CLI at Randomization

Acute limb ischemia, major amputation for vascular cause, myocardial infarction, ischemic stroke, CV death

Primary Endpoint

Acute limb ischemia, major amputation of a vascular etiology, myocardial infarction, ischemic stroke, CV death

Placebo

Primary Endpoint Components in Patients with CLI

Placebo

Rivaroxaban

Safety of Rivaroxaban by CLI at Randomization

Primary Endpoint CLI Patients by Concomitant Clopidogrel Use

Primary Endpoint in CLI Patients by Concomitant *Diabetes Mellitus*

Primary Endpoint CLI Patients by **Prior Limb Revascularization**

Unplanned Index Limb Revascularization

Unplanned Index Limb Revascularization

Net Clinical Benefit

Acute limb ischemia, major amputation of a vascular etiology, myocardial infarction, ischemic stroke, all cause mortality, ICH or fatal bleeding

Summary

- In VOYAGER PAD, patients with PAD presenting for LER for CLI were at very high risk of irreversible harm events of the heart, limb and brain with:
 - ~1 in 10 having a first event within 6 months of intervention
 - > 1 in 4 having a first event within 3 years of intervention
- Rivaroxaban 2.5 mg twice daily with aspirin versus aspirin alone significantly reduces this risk with benefits apparent early and continued over time and with consistency in those with and without CLI
- The benefits of rivaroxaban 2.5 mg twice daily with aspirin versus aspirin alone extend to <u>reductions in the need for unplanned index limb</u> <u>revascularization</u> with benefits apparent at 1 month after LER

Conclusions

- Patients with CLI (now CLTI), one of the most severe manifestations of PAD, represent an extreme risk population characterized by high rates of recurrent procedures and adverse events of the limb, heart and brain
- Lower extremity revascularization is recommended in CLI to minimize/prevent tissue loss; however, the risk of complications appears particularly high in the post intervention setting
- Despite this extreme risk profile, there are few adjunctive medical therapies that have demonstrated benefit in CLI patients overall and particularly after intervention
- Rivaroxaban 2.5 mg twice daily with aspirin should be considered as adjunctive therapy after LER for CLI to reduce adverse events of the heart, limb and brain as well as the need for repeat revascularizations

