Temporal shifts in guidelinedirected medical therapy prescribed at discharge to heart failure patients in a large US integrated health system

TJ Gluckman¹, S-T Chiu¹, D Rider², P Tseng³, J Mudd⁴, J Remick¹, S Sikirica⁵, A Carroll⁵, C Granowitz⁵, ME Canonico⁶, J Hsia⁶, M Bonaca⁶

¹Center for Cardiovascular Analytics, Research and Data Science (CARDS), Providence Heart Institute, Providence Health System, Portland, Oregon ²Providence Research Network, Providence Health System, Missoula, Montana ³University of Arizona College of Medicine, Tucson, Arizona ⁴Sacred Heart Medical Center, Providence Health System, Spokane, Washington ⁵Lexicon Pharmaceuticals, Inc., The Woodlands, Texas

⁶CPC Clinical Research, University of Colorado Health, Denver, Colorado

Background

- Heart failure (HF) is a major cause of morbidity and mortality
- While multiple therapies are known to improve clinical outcomes in heart failure (HF), they remain underutilized¹
- Hospitalization provides a unique opportunity to address this issue²
- We sought to better understand temporal changes in prescription of guideline-directed medical therapy (GDMT) for patients hospitalized with HF at the time of discharge

Hypothesis

We predicted an increase in prescription of GDMT, but with variability across HF types and ongoing opportunity for improvement

Methods

- We performed a cross-sectional analysis of patients discharged with HF from a large integrated health system (Providence) within the western United States between 1/1/2018 and 10/1/2022
- This was part of a larger effort to better understand the demographics, clinical characteristics, and treatment patterns of HF patients (across all payers) as part of a quality improvement initiative
- HF was defined by ICD-10 codes assigned as the primary diagnosis at discharge (150.2 - Systolic HF, 150.3 - Diastolic HF, 150.4 - Combined systolic and diastolic HF, I11.0 - Hypertensive heart disease with HF, and I13.0 + I13.2 - Hypertensive heart disease with HF and CKD)
- Patient-level analyses were not performed; all hospitalizations were considered independent events
- Prescription rates of HF medications were assessed at discharge: Beta blocker (evidence-based for those with systolic HF and systolic and diastolic HF)
- ACE inhibitor (ACEi)/angiotensin receptor blocker (ARB) or angiotensin receptor neprilysin inhibitor (ARNI)

Cardiovascular

Analytics, Research +

Mineralocorticoid receptor antagonist (MRA)

OVIDENCE

Heart Institute

Sodium-glucose co-transporter-2 inhibitor (SGLT2i)

- 100 Pfor trend Systolic HF, p=0.3690 Diastolic HF, p=0.10
- Systolic & Diastolic HF, p=0.48 80 Hypertensive Heart Disease & HF, p<0.01

Hypertensive Heart Disease & HF + CKD, p=0.21 $_{\odot}$ valu

Ч

of

Figure. Temporal distribution of principal heart failure discharge diagnoses by ICD-10 code

Results

- A total of 61,238 HF hospitalizations occurred, involving 43,234 patients, with 76% having only 1 hospitalization
- Demographic and clinical characteristics varied based on the ICD-10 codes assigned (Table)

Table. Subset of demographic and clinical characteristics of patients hospitalized with HF

	I50.2	I50.3	I50.4	I11.0	113.0 + 113.2
	n=2,663	n=1,929	n=1,864	n=21,823	n=32,959
Demographics					
Age, years, median (IQR)	64 (52-76)	76 (64-86)	66 (55-80)	73 (61-83)	76 (65-85)
Female sex	35%	61%	37%	49%	45%
Race					
Asian	3%	3%	4%	3%	5%
Black	5%	2%	5%	6%	8%
White	79%	84%	78%	78%	73%
Other	4%	2%	3%	2%	2%
Ethnicity					
Hispanic/Latino	8%	7%	9%	10%	12%
Clinical characteristics					
Current smoker	28%	13%	22%	18%	10%
Hypertension	35%	46%	40%	100%	100%
Hyperlipidemia	39%	51%	47%	66%	78%
Diabetes mellitus	24%	29%	30%	39%	59%
Coronary artery disease	51%	42%	55%	56%	68%
Peripheral artery disease	13%	17%	16%	18%	29%
Cerebrovascular disease	14%	20%	18%	22%	28%
eGFR <60 ml/min/1.73 ²	48%	44%	52%	42%	88%
BMI, kg/m ² , median (IQR)	27.2 (23-32)	29.2 (24-37)	27.4 (24-33)	29.8 (25-37)	29.3 (25-35)

- Prescription rates for a beta blocker decreased slightly over time, with lowest rates among those with diastolic heart failure (Figure)
- Prescription rates for an ACEi or ARB largely fell across all 5 groups; this was offset by a rise in prescriptions rates for an ARNI, particularly among those with systolic HF and systolic and diastolic HF (Figure)
- Prescription rates for an MRA rose modestly over time for most HF groups, with lowest rates among those with diastolic HF and hypertensive heart disease with HF and CKD (Figure)
- Prescription rates for an SGTL2i rose for all 5 groups over time, with the largest increases in those with systolic HF and systolic and diastolic HF (Figure)

Conclusions

- Despite increased utilization of GDMT in patients discharged with HF, substantial opportunity for improvement exists
- Systems-based approaches are needed to facilitate more rapid adoption of evidence-based therapies in this patient population

ACEi=angiotensin converting enzyme inhibitor, ARB=angiotensin receptor blocker, ARNI=angiotensin receptor neprilysin inhibitor, BMI=body mass index, CKD=chronic kidney disease, eGFR=estimated glomerular filtration rate, GDMT=guideline-directed medical therapy, HF=heart failure, ICD=International Classification of Diseases, IQR=interquartile range, MRA=mineralocorticoid receptor antagonist, SGLT2i=sodium-glucose co-transporter-2 inhibitor

Contact info: Ty J Gluckman, tyler.gluckman@providence.org References: ¹Greene SJ, Butler J, Albert NM, et al. JAm Coll Cardiol. 2018;72:351-366; ²Patolia H, Khan MS, Fonarow GC, et al. JAm Coll Cardiol. 2023;82:529-543 Disclosures: None Acknowledgements: Special thanks to Jules Weiss for administrative support Funding: This work was supported in part by funding from Lexicon Pharmaceuticals, Inc., Woodlands, TX